r-LightBioCom Circularity and Recyclability Innovations

Fernando Cepero Mejias, Coventry University & r-LightBioCom

Open Innovation Workshop

Processes and methods for recycling, reuse, and recovery of advanced composite materials in the transport sector

r-LightBioCom

r-LightBioCom Circularity and Recyclability Innovations

Repoxyble's 1st Open Innovation Workshop

r-LightBioCom

New bio-based and sustainable **R**aw Materials enabling Circular Value Chains of High Performance **Light**weight **BioCom**posites

Topic: HORIZON-CL4-2022-RESILIENCE-01-11

Advanced lightweight materials for energy efficient structures

Type of action: Research and Innovation Action (RIA)

Coordinator: AITEX

Start date: 01/01/2023

End date: 30/06/2026

Duration: 42 months

Budget: 4,201,176 €

Project no.: 101076868

https://cordis.europa.eu/project/id/101091691

Approach

MATERIALS

New advanced bio-based and recycled high-performance materials with inherent recyclability properties

PRODUCTION TECHNOLOGIES

Efficient processing techniques combined with recycling technologies

METHODS & TOOLS

for a standardised, holistic sustainable high-performance composite design, modelling and systematic optimization

Development of new bio-based resins, additives and formulations for HPC

New bio-based resins with improved recyclability

- · Tailored reactivity
- · High bio-based content
- Dynamic thermosets with inherent recyclability
- Application-oriented performance
- Multiple repair, re-processing, re-bonding, recycling, reuse

New bio-based nanomaterials as functional additives

- Low cost
- Low density and weight
- Recyclability / Degradability
- Co-reactivity with resins
- Improved polarity and dispersibility
- Enhanced thermal and mechanical properties
- With tailored functionalities

Enzymatic pre-activation of biomass

Functionalisation and nano-transformation

New bio-based resin formulations

- High flexibility of modular dispersion line
- Optimized compounding and dispersion processes
- Dispersion quality monitoring
- Adjustment to related processing technologies
- Fulfilment of application requirements

Dispersion modules

Repoxyble's 1st Open Innovation Workshop

New HPC components based on sustainable textile products and bio-based resins

New Sustainable Fibres

Recycled Fibres r-CF, r-GF, r-Aramid

Natural Fibres Basalt, Flax, Hemp

Adaption of processing technologies

- Carding
- Spinning

New Sustainable Textiles

Non-woven fabrics

r-CF + PA6/PP

r-Aramid

r-GF + PA6/PP

Natural fibres

Hybrid fabrics with recycled fibres

r-CF + p-CF + PA6

Roving with recycled fibres and basalt

r-Aramid + Basalt + PA6

Staple fibre yarn with recycled fibres

r-CF + PA6

New rapid curing technologies

1. RTM + Frontal photopolymerization

UV activation

t=to (after UV
radiation)
t= 90 s UV radiation

Polymerization propagation

t=120 s (without UV radiation)

2. Vacuum infusion + microwaves

Infusion process

Novel recycling technologies for the high-performance composite components

- Thermoset composites recycling into its components: resin building blocks and reinforcing fibres
- Application of newly developed recycling process to bio-resins and bio-composites

Life Cycle Assessment (LCA)

- Environmental impact of r-LightBioCom solutions (materials, curing technologies and recycling processes)
- Comparison against conventional products and processes
- Decision making to choose eco-friendlier alternatives

r-LightBioCom's LCA

Natural Fibres Processing Stages for LCA

Optimization framework for composite modelling, sustainability and validation

- Development of a Coupled Ecological Optimization (CEO) Framework to facilitate the implementation and impact of the sustainable material solutions.
- Optimized r-LightBioCom solutions relating to production cost, structural integrity and environmental impact will be developed through the advanced CEO.
- Automated material characterization and calibration utilizing digital twin, Reduced Order Modelling, homogenization and automated reporting will aid structural optimization and analysis

r-LightBioCom's results will be validated in use cases.

a) Automotive sector:

- Application 1: Spoiler (exterior)
- Application 2: Trunk floor (interior)

b) Infrastructure sector:

Application: Composite pultruded profiles for tunnel lining

c) Aeronautical sector:

Application: Leading Edge (movable surface)

r-LightBioCom's results will be validated in use cases.

a) Automotive sector:

- Application 1: Spoiler (exterior)
- Application 2: Trunk floor (interior)

b) Infrastructure sector:

Application: Composite pultruded profiles for tunnel lining

c) Aeronautical sector:

Application: Leading Edge (movable surface)

Natural organic and inorganic fibres

Bio-epoxy resin

Manufacturing via Hand Lay-up

r-LightBioCom's results will be validated in use cases.

a) Automotive sector:

- Application 1: Spoiler (exterior)
- Application 2: Trunk floor (interior)

b) Infrastructure sector:

Application: Composite pultruded profiles for tunnel lining

c) Aeronautical sector:

Application: Leading Edge (movable surface)

Honeycomb core from natural/recycled fibre non-wovens

Natural organic non-wovens as skin layers

Bio-based resin

Manufacturing via Semiautomated Pultrusion

r-LightBioCom's results will be validated in use cases.

a) Automotive sector:

- Application 1: Spoiler (exterior)
- Application 2: Trunk floor (interior)

b) Infrastructure sector:

• Application: Composite pultruded profiles for tunnel lining

c) Aeronautical sector:

Application: Leading Edge (movable surface)

r-Aramid + Basalt fibre and/or r-CF + PA6 Bio-benzoxazine and/or bio-epoxy resin

Manufacturing via Pultrusion Process

r-LightBioCom's results will be validated in use cases.

a) Automotive sector:

- Application 1: Spoiler (exterior)
- Application 2: Trunk floor (interior)

b) Infrastructure sector:

Application: Composite pultruded profiles for tunnel lining

c) Aeronautical sector:

• I Application: Leading Edge (movable surface)

Bio-benzoxazine

+

Manufacturing via RTM or infusion

Summary

Sustainability results

- New bio-based resins and sustainable fabrics
- Sustainable manufacturing and recycling technologies
- Holistic optimisation tools for sustainable composite structures
- Tools for composite material modelling and validation

Further results

- Life Cycle Assessment (LCA) study
- Guidelines for standardised production processes & sharing best practices
- New business models

Coupled Ecological Optimization (CEO) Flowchart

Contact us

Project Coordinator

Aitex

Info-r-LightBioCom@dlr.de

Technical Manager

Eduardo Fages efages@aitex.es

Dissemination Manager

Dorothea Weber dorothea.weber@dlr.de

Visit us

Project website

www.r-LightBioCom.eu

Follow us

LinkedIn

https://www.linkedin.com/company/rlightbiocom/

Twitter

https://twitter.com/rLightBioCom

High-Performance Composites / Low Environmental Impact

Thank you

www.r-LightBioCom.eu

